
Elliptic Curve Cryptography

ECMM705: Mathematical Sciences Project III

Jack Ronald Percival Hanslope

The University of Exeter

Supervisor: Gihan Marasingha

Sunday 14th April 2019

Abstract

This paper will give an introduction to Elliptic curves before moving
on to explore some applications of elliptic curves to modern cryptography.
This will include an application to cryptanalysis, a key-agreement protocol
for use in symmetric key encryption and methods for asymmetric key
encryption. The appendices contain some coded implementations of the
discussed algorithms, written in SageMath.

Contents

1 Introduction to the project . 1
2 Some basic properties of Elliptic Curves 2

2.1 Group structure of an elliptic curve 3
2.2 Explicit values for addition . 3

3 Elliptic Curve Factorisation . 5
3.1 Pollard’s p− 1 method . 5
3.2 Lenstra’s Method . 6

4 Diffie-Hellman and ElGamal . 7
4.1 Diffie-Hellman . 7
4.2 ElGamal . 9

5 Bilinear Pairings . 11
5.1 Motivation . 11
5.2 Bilinear pairings . 12
5.3 Protocols . 14

5.3.1 Joux’s key agreement . 14
5.3.2 Short Signatures . 15

5.4 Tate Pairing . 15
5.4.1 Miller’s Algorithm . 17
5.4.2 Converting the Tate pairing into a usable pairing 18

5.5 Curve Selection . 19
5.5.1 Supersingular Curves . 21
5.5.2 Ordinary Curves . 21

5.6 An example of Joux’s protocol . 22
A Code . 23

A.1 Elliptic Curve Class . 23
A.2 Lenstra . 25
A.3 Cocks-Pinch Method . 27
A.4 Tate Pairing . 28
A.5 Miller’s Algorithm . 29

B Alice and Bob . 30

1 Introduction to the project

The area of cryptography is one of great interest to mathematicians; modern
cryptography underpins so much of our everyday lives. One of the more recent
advances in cryptography has been in the area of elliptic curves. This paper aims
to give an introduction to elliptic curves before exploring some of the different
applications of they have to cryptography.

What follows is a brief overview of how this paper is laid out. In section 2
we introduce elliptic curves over finite fields, the group law for the points on

1

an elliptic curve and explicit values for elliptic curve point addition. Section
3 first discusses one of the most common integer factorisation methods, Pol-
lard’s p − 1 method, before outlining one of the method’s drawbacks. It then
goes on to outline an algorithm for factorising integers using elliptic curves,
following Neal Koblitz’s 1994 work, A course in number theory and cryptogra-
phy ([Kob94]). Said algorithm shares some similarities with Pollard’s method,
but avoids the main drawback. Section 4 introduces the reader to the Diffie-
Hellman key exchange (first introduced in [DH76]), the Diffie-Hellman problem
and the ElGamal public-key cryptosystem (of [ElG85]) before discussing the
analogues of these using elliptic curves. Section 5 considers the current area
of open research: bilinear pairings, following a lot of the work done by Alfred
Menezes in his 2009 paper [Men09]. We first discus some motivation for bilinear
pairings, before introducing the pairings themselves and some protocols using
said pairings. We go on to introduce the Tate pairing, including Miller’s algo-
rithm for computing the pairing, and how we can adapt the pairing for use. We
discus how one can choose the curve they are working over to provide a good
level of security whilst still allowing computations to be feasible, using the work
[FST10] of Freeman, Scott and Teske. Finally, we provide an explicit example of
a three-party, one-round key-agreement protocol, introduced by Antoine Joux
in his 2004 paper [Jou04]. In the appendices we present some scripts for imple-
menting some of the protocols discussed in the paper. The scripts are written
in SageMath, an open-source computer algebra system.

2 Some basic properties of Elliptic Curves

We define an elliptic curve E over a field K by a non-singular Weierstrass
equation

y2 + a1xy + a3yx
3 + a2x

2 + a4x+ a6 (2.1)

with a1, a2, a3, a4, a5, a6 ∈ K. When we refer to the elliptic curve, we are
usually referring to the set of K-rational points, E(K). E(K) is the set of
points (x, y) ∈ K × K satisfying (2.1) along with the point at infinity, ∞.
Suppose the characteristic of K is p. If p 6∈ {2, 3}, we can transform an equation
of the form (2.1) into an equation of the form

y2 = x3 + ax+ b (2.2)

where a, b ∈ K and 4a3 + 27b2 6= 0, using a linear change of variables. If p = 2,
then we can transform (2.2) into an equation of the form

y2 + cx = X3 + ax+ b or y2 + xy = x3 + ax2 + b.

If p = 3, then we can transform an equation of the form (2.1) into an equation
of the form

y2 = x3 + ax2 + bx+ c

2

where the cubic on the right hand side has no repeated roots. For the majority
of this project, we will be considering fields K for which char(K) > 3 and
equations of the form (2.2).

2.1 Group structure of an elliptic curve

A useful property of the points on an elliptic curve is that they, with the following
definition of addition and inverses and the point at infinity as the identity, form
an abelian group.

Definition 2.1. Let E be an elliptic curve defined over some field K of char-
acteristic not equal to 2 or 3 by an equation of the form (2.2). Let P and Q be
two distinct points on the elliptic curve, neither equal to the point at infinity,
∞. We define inverses and addition as follows, with ∞ serving as the identity.

1. If P = (x, y), let −P = (x,−y). If K = R, then −P will be the point
when P is reflected in the x-axis. From the equation (2.2), we can see
that −P is guaranteed to be on the curve. We define P +−P =∞.

2. Suppose P and Q have different x coordinates, then the line through P
and Q will intersect the curve at exactly on other point, R say. We define
P +Q = −R

3. To find P + P = 2P , consider the tangent through P . This will intersect
the elliptic curve at exactly one more point (which may be the point at
infinity), R say. Then 2P = −R. If P is a point of inflection, then R is
taken to be P .

This definition of addition and inverses enables us to form the set of K-rational
points of E into a group.

Proposition 2.1. Let E and K be as in definition (2.1). Then the set of K-
rational points of E, E(K) forms an abelian group with ∞ as the identity and
addition as in definition (2.1).

Proof. Omitted. The references for §VI.1 of [Kob94] give some examples of
where this proof can be found.

2.2 Explicit values for addition

We will show that addition of elliptic curve points in the manner descirbed in
the previous section is well-defined and in doing so, derive formulas for the point
addition. We will follow closely Example 1 of §VI.1 of [Kob94]. Let q > 3, E be

3

an elliptic curve defined over a finite field Fq by equation y2 = x3 + ax+ b and
points P and Q be on the elliptic curve with R = P +Q. Let (xP , yP),(xQ, yQ)
and (xR, yR) be the coordinates of P , Q and R respectively. We are aiming to
express xR and yR in terms of xP , yP , xQ, yQ . First suppose that P 6= Q and
that xP 6= xQ so that the line ` through P and Q is not vertical. Let y = αx+β
be the equation of this `. We have that

α =
yQ − yP
xQ − xP

and β = yP − αxP

A point T = (x, αx+ β) lies on the line ` if and only if

(αx+ β)2 = x3 + ax+ b.

So each point of intersection of the line ` with the curve E will correspond to
one root of the equation

x3 − (αx+ β)2 + ax+ b = 0

We know there are roots at (xP , αxP +β) and (xQ, αxQ +β). Then, by Vieta’s
formulas, we deduce that xR = α2 − xP − xQ and then using yR = −(αxR + β)
(the minus sign coming in because R is reflected in the x-axis from the point of
intersection)

xR =

(
yQ − yP
xQ − xP

)2

− xP − xQ

yR = −yP +

(
yQ − yP
xQ − xP

)
(xP − xR). (2.3)

Suppose Q = P , we must now take α as the derivative dy/dx and the point P .
Differentiating the equation y2 = x3 + ax+ b gives

2y
dy

dx
= 3x2 + a

dy

dx
=

3x2 + a

2y

α =
3x2P + a

2yP

Thus for R = 2P we get

xR =

(
3x2P + a

2yP

)2

− 2xP

yR = −yP +

(
3x2P + a

2yP

)
(xP − xR). (2.4)

4

3 Elliptic Curve Factorisation

For this section, we follow [Kob94]. One of the reasons mathematicians are
most interested in elliptic curves is that they have provided a new mechanism
for factoring large integers. This method, pioneered by Lenstra, does not provide
enough of an improvement on existing methods to pose a threat to cryptographic
systems whose security is built on the supposed intractability of factoring. How-
ever, this unexpected development does show that we cannot be too complacent
with the supposed security of modern cryptography.

We first give a definition of smooth and powersmooth before outlining the Pol-
lard p− 1 method; finally we introduce Lenstra’s method.

Definition 3.1. Let B > 0. An integer n > 1 is said to be B-smooth if every
prime factor of n is less than or equal to B. n is said to be B-powersmooth
if, for any prime p and integer α such that pα | n, pα ≤ B.

3.1 Pollard’s p− 1 method

We wish to find a (as yet unknown) prime factor p of some large composite
number n. If p − 1 has only small prime divisors then Pollard’s method will
usually find p; specifically, the method will usually be successful if n is B-
powersmooth. We follow the algorithm as outlined in [Mar19].

Algorithm 3.1. Given a composite number n and a bound B.

1. Let p1 < p2 < . . . < pt be the primes less than or equal to B. Set a← 2.

2. For all i = 1, . . . t, find the largest integer αi satisfying Pαi
i ≤ B . Set

M ←
t∏
i=1

pαi
i

3. Compute g ← gcd(aM − 1, n).

4. If 1 < g < n, then g is a non-trivial factor of n. If g ∈ {1, n} then the
algorithm has failed.

We now give an example.

Example 3.1. Suppose we would like to factor the integer n = 49153 using
Lenstra’s method with the bound B = 5. The prime powers at or below B are
22, 3 and 5. We set M = 22×3×5 = 60. We compute 260 (mod 49153) = 25803
and then compute gcd(2M − 1, n) = gcd(35802, 49153) = 13 so 13 | 49153.

5

In the previous example, we found prime divisor p = 13, giving p− 1 = 12. The
only prime divisors of 12 are 2 and 3 which are both small. Now we consider
an example where the bound B would have to be very high for the algorithm
to be successful.

Example 3.2. Consider n = 620497. It turns out that n = 719 × 863 and
719 − 1 = 2 × 359 and 863 − 1 = 2 × 431 where both 359 and 431 are prime.
We would therefore have to use a value of B ≥ 359 before the algorithm was
successful.

3.2 Lenstra’s Method

In this section we will follow [Kob94] and [Mar19]. When we run Pollard’s
method, we are hoping that the various groups Z∗p given for primes p | n will
enable us to find a divisior. When we fix n, these groups are fixed too; if they
all happen to have orders divisible by only large primes, then Pollard’s method
will take a long time. The method described below, is called the Lenstra
elliptic-curve factorisation method, it being named after Hendrik Lenstra.

We execute the method by constucting an elliptic curve over the ring Zn. As Zn
is not a field for composite n, there will be some elements of Zn that do not have
multiplicative inverses. Multiplicative inverses are required when computing
point addition, so the set of points E(Zn) is not closed and hence, not a group.
We will make use of this fact by attempting to compute point addition. An
element a ∈ Zn will have a multiplicative inverse if and only if gcd(a, n) = 1 so
when point addition fails, if 1 < gcd(a, n) < n, we will have found a non-trivial
factor of n.

Given a composite number n with (as yet unknown) prime factor p, a rough
outline of the method is

1. Select an elliptic curve E over Z/nZ of the form (2.2) and a point on the
curve P .

2. Set bound B and then set k as the product of all prime powers pi less
than or equal to B.

3. Attempt to calculate kP by first calculating p1P and then p21P and so
on. If at any point, the intermediary calculation fails, we will have either
found a non-trivial divisor of n or must start again with a new curve and
point pair.

Algorithm 3.2 (Lenstra’s algorithm). We would like to find a non-trivial di-
visor of some integer n given a bound B.

1. Check that n is not:

6

• divisible by 2 or 3

• prime

• a perfect power

If it is any of these, we will have found a non-trivial factor. (All of these
can be tested for in relatively little time when compared to the time for the
whole Lenstra algorithm).

2. Let p1 < p2 < . . . pt be the primes less than or equal to B.

3. For each i = 1, . . . , t find the largest integer αi such that Pαi
i ≤ B. Set

k ←
t∏
i=1

pαi
i

4. For each i in{
p1, p

2
1, p

3
1, . . . , p

αp1
1 , p2 · p

αp1
1 , p22·

αp1
1 , . . . , p

αp2
2 p

αp1
1 , . . . , k

}
attempt to find iP , at each stage, multiplying the previous result by the
next factor. At each attempt, if there is a failure and the result cannot be
found, we will be able to find a non-trivial divisor of n by taking a gcd. If
kP is successfully found, we must find a new curve-point pair (E,P).

We will now consider a toy example.

Example 3.3. Suppose we would like to find a non-trivial factor of the integer
n = 77 using the bound B = 5. We perform some quick checks to ensure n is not
prime, a prime power, or a multiple of 2 or 3. We then compute k = 60 = 2·2·3·5
and randomly generate an elliptic curve E over Z77 given by

y2 = x3 + 52x+ 49

with point P with coordinates (8, 47). We compute 2P as (44, 71) using (2.4).
We then attempt to compute 2(2P) however, when we try to find the inverse of
14 (mod 77) we find that gcd(14, 77) = 7 and so 7 is a non-trivial factor of 77.

4 Diffie-Hellman and ElGamal

In this section, we will consider some adaptations we can make to the Diffie-
Hellman key-exchange and the ElGamal public key cryptosystem.

4.1 Diffie-Hellman

One issue with symmetric encryption, is that the parties that wish to com-
municate securely must first agree on a shared secret key. If an eavesdropper

7

intecepted this secret key, then the encryption would be broken; the Diffie-
Hellman key exchange was one of the first solutions to this problem. We outline
the algorithm below.

Algorithm 4.1 (Two-party Diffie-Hellman key agreement). Alice and Bob
would like to exchange a shared secret.

1. Alice (or Trent) generates a finite cyclic, multiplicatively written group
G = 〈g〉 of order n. She then chooses a secret a ∈ Z∗n. Alice publishes
(G, g, ga).

2. Bob selects a secret b ∈ Z∗n and publishes gb.

3. Alice computes sa ← (gb)a using her secret key a and Bob’s public key gb.

4. Bob computes sb ← (ga)b using his secret key b and Alice’s public key ga.

Alice and Bob will now have the shared secret key (ga)b = gab = (gb)a. Suppose
an eavesdropper, Eve, has access to all of Alice and Bob’s communications
and wants to recover the secret key gab. Eve has G, g, ga, gb, and wants to
compute gab; this is known as the Diffie-Hellman problem (DHP). The assumed
intractability of the DHP is the basis for the security of the Diffie-Hellman
key-exchange. We will show that the DHP reduces in polynomial time, to the
discrete logarithm problem (DLP). The DLP in a multiplicatively-written group
G is the problem of, given a, b ∈ G, finding some x ∈ Z such that ax = b. We
often use the multiplicative group of a finite field F∗q as the group G. Saying the
DHP reduces in polynomial time to the DLP means that there is an algorithm
which solves the DHP using an algorithm which solves the DLP and that this
algorithm runs in polynomial time if the algorithm for the DLP does. To see
that the DHP reduces in polynomial time to the DLP, suppose we are given g,
ga and gb and we wish to find gab, we use an oracle to solve the DLP to find a
then compute gab = (gb)a. We outline an example below.

Example 4.1. Suppose Trent sets G = Z∗23 with g = 5. Alice chooses her
private key to be a = 17 and calculates and publishes

ga = 517 ≡ 15 (mod 23).

Bob chooses his public key to be b = 20 and publises

gb = 520 ≡ 12 (mod 23).

Alice then computes
(gb)a = 1217 ≡ 9 (mod 23)

and Bob computes
(ga)b = 1520 ≡ 9 (mod 23)

and so Alice and Bob have the shared secret 9. An adversary Eve would have
to solve the DLP to recover either a or b and then gab .

8

We can also execute the Diffie-Hellman key exchange over an additively written
group. The algorithm for which is below.

Algorithm 4.2 (Two-party Diffie-Hellman key agreement for a additive group).
Alice and Bob would like to exchange a shared secret.

1. Alice (or Trent) generates a finite cyclic additively written group G = 〈P 〉
of order n. She then chooses a secret a ∈ Z∗n. Alice publishes (G,P, aP).

2. Bob selects a secret b ∈ Z∗n and publishes bP .

3. Alice computes sa ← a(bP) by using her secret key a and Bob’s public bP.

4. Bob computes sb ← b(aP) by using his secret key b and Alice’s public aP .

Alice and Bob will now have the shared secret a(bP) = b(aP). An eaves-
dropper has the information aP and bP and wishes to recover abP = baP ;
this is another example of the Diffie-Hellman problem (DHP). The DLP in an
additivley-written group G = 〈P 〉 whose order is n is the problem of, given
P,Q ∈ G, finding x ∈ Zn such that Q = xP . The DLP is intractable for certain
groups.

We can use the group of points on an elliptic curve as our additive cyclic group
G. We demonstrate a toy example below with an elliptic curve over a prime
field; we could of course, use an elliptic curve over a prime power field.

Example 4.2. Suppose Trent picks the Elliptic Curve E over the field F73 given
by equation

y2 = x3 + 4x+ 69

and base point B = (51, 8). The group G = E(K) is of order 78. Suppose
Alice chooses her private key a = 71 she then calculates her public key to be
71P = (34, 69) and publishes this. Suppose then that Bob chooses his private
key to be b = 45 and publishes his public key 45P = (13, 37). Alice then
computes the shared secret as

a× 45P = 71× (13, 37) = (31, 45)

and Bob computes the shared secret as

b× 71P = 45× (34, 69) = (31, 45).

4.2 ElGamal

The Diffie-Hellman key exchange is not used for sending secure communica-
tions, but sharing a secret key (which will often then be used for symmetric
encryption). However, it can quite easily be adapted to the ElGamal public-
key cryptosystem which can be used for sending secure communications, the
algorithm for which is below and is reproduced from [Mar19].

9

Algorithm 4.3. Bob wishes to send a secret message to Alice.

1. [Key generation]

(a) Alice (or Trent) selects a finite, cyclic (multiplicatively written) group
G and a generator g of the group. She publishes (G, g, n) where n←
|G|.

(b) Alice chooses and publishes a secret key a ∈ Z∗n.

2. [Encryption]

(a) Bob wishes to encrypt the plaintext message m ∈ G.

(b) Bob chooses an ephemeral key k ∈ Z∗n. Bob computes c1 ← gk.

(c) Bob computes c2 ← (ga)km. Bob publishes (c1, c2).

3. [Decryption]

(a) Alice computes m← c−a1 · c2

Again, we can use an additive group rather than a multiplicative group (with
some alterations of course) and this additive group could be the group of points
on an elliptic curve. The algorithm below gives a method for the ElGamal
public key cryptosystem using the group of points on an elliptic curve over a
finite field.

Algorithm 4.4. Bob wishes to send a secret message to Alice.

1. [Key generation]

(a) Alice (or Trent) selects a finite field Fq where q is a prime power. For
simplicity, we assume the characteristic of the field is greater than 3.
She then chooses an elliptic curve E over the field and a base point
B on the curve.

(b) Alice chooses a secret key a ∈ Z.

(c) Alice computes and publishes her public key aB.

2. [Encryption]

(a) Suppose Bob wishes to send Pm ∈ E(K). He chooses an ephemeral
key k ∈ Z and computes kB.

(b) He computes Pm + k(aB) and sends (kB, Pm + k(aB)) to Alice.

3. [Decryption]

(a) Alice recovers the plaintext message Pm as

Pm + k(aB)− a(kB) = Pm

We will amend the example from before slightly to use the ElGamal PKC.

Example 4.3. Again, we have the elliptic curve E defined by

y2 = x3 + 4x+ 69

10

defined over F73 with base point B = (51, 8). Alice’s private key is a = 71
and her public key is aB = (34, 69). Suppose Bob wishes to send the secret
message Pm = (68, 56). Bob chooses an ephemeral key k = 13 and computes
kB = (24, 22). He then computes

Pm + k(aB) = (68, 56) + 13× (34, 69) = (22, 72)

Bob sends ((24, 22), (22, 72)) to Alice. Alice computes Pm as

(22, 72)− 71× (24, 22) = (68, 56)

as expected.

5 Bilinear Pairings

One area of open research in crypotgraphy is that of bilinear pairings. We will
discus some of their applications in the following section.

5.1 Motivation

The Diffie-Hellman key-exchange, as introduced in the previous chapter can be
easily extended to three (or more) parties, however, two-rounds (or more) are
then required. The algorithm is outlined below.

Algorithm 5.1 (Three-party Diffie-Hellman key agreement). Alice, Bob and
Charlie would like to exchange a shared secret.

1. Trent (or Alice) generates a finite cyclic group G = 〈P 〉 of order n and
publishes (G,P).

2. Alice, Bob and Charlie each choose a secret key a, b, c ∈ Z∗n respectively.

3. Alice, Bob and Charlie each calculate aP, bP, cP respectively.

4. Alice sends aP to Bob, Bob sends bP to Charlie and Charlie sends cP to
Alice.

5. Alice calculates a(cP), Bob calculates b(aP) and Charlie calculates c(bP).

6. Alice sends a(cP) to Bob, Bob sends b(aP) to Charlie and Charlie sends
c(bP) to Alice.

7. Alice calculates a(cbP), Bob calculates b(acP) and Charlie calculates c(baP).

All three parties will now have the shared secret acbP = bacP = cbaP ; an
eavesdropper would have to compute abcP given P, aP, bP, cP, abP, bcP, caP .
As previously mentioned, this protocol requires two-rounds of communication;

11

we would prefer to only use one-round. A one-round, three-party protocol for
exchanging a shared secret is one of the applications of bilinear pairings that we
will discus in this section.

5.2 Bilinear pairings

We follow [Men09]. For some prime number n, an additively written group
G1 = 〈P 〉 of order n with identity ∞ and a multiplicitivly-written group GT of
order n with identitiy 1 we have the following definition.

Definition 5.1. A bilinear pairing on (G1, GT) is a map

ê : G1 ×G1 → GT

satisfying

1. (bilinearity) For all R,S, T ∈ G1 we have

ê(R+ S, T) = ê(R, T)ê(S, T), and

ê(R,S + T) = ê(R,S)ê(R, T).

2. (non-degeneracy) ê(P, P) 6= 1

3. (computability) ê can be efficiently computed

We have the following proposition on the properties of bilinear pairings.

Proposition 5.1. For all S, T ∈ G1:

1. ê(S,∞) = 1 and ê(∞, S) = 1

2. ê(S,−T) = ê(−S, T) = ê(S, T)−1

3. ∀a, b ∈ Z, ê(aS, bT) = ê(S, T)ab

4. ê(S, T) = ê(T, S)

5. If, for all R ∈ G1, ê(S,R) = 1 then S =∞

Proof. Suppose that we have G1 and GT as in the definition, S, T ∈ G1 and ê
a bilinear pairing on (G1, GT).

1. We will show that ê(S,∞) = 1 and then ê(∞, S) = 1 will follow once we
have proved 4.

ê(S,∞) = ê(s,∞+∞)

ê(S,∞) = ê(S,∞)ê(S,∞)

⇒ 1 = ê(S,∞)

12

2. Observe that

ê(S,−T)ê(S, T) = ê(S,−T + T)

= ê(S,∞)

= 1

⇒ ê(S,−T) = ê(S, T)−1

We can show similarly that ê(−S, T) = ê((S, T)−1) by using ê(∞, T) = 1

3. We have that

ê(aS, bT) = ê(S + S + . . . S︸ ︷︷ ︸
a times

, bT)

= ê(S, bT)a

= ê(S, T + T + . . . T︸ ︷︷ ︸
b times

)a

=

ê(S, T)ê(S, T) . . . ê(S, T)︸ ︷︷ ︸
b times

a

ê(aS, bT) = ê(S, T)ab

4. Note that, since G1 is cyclic, it is commutative (a known property of
groups), and S, T can be expressed in terms of P . Let S = sP and
T = tP . Then we have

ê(S, T) = ê(sP, tP)

= ê(P, P)st

= ê(P, P)ts

= ê(tP, sP)

= ê(T, S)

5. We will instead show that the contrapositive holds, that is the following:

∞ 6= S ∈ G1 ⇒ ∃R ∈ G1 : ê(S,R) 6= 1

Let S ∈ G1 such that S 6= ∞. Then write S = aP . Consider a ∈ Zn;
since n is prime, Zn is a field and so a has a multiplicative inverse. Call
this inverse b. So ab = xn+ 1 for some x ∈ Z. Let R = bP and consider

ê(S,R) = ê(aP, bP)

= ê(P, P)ab

= ê(P, P)xn+1

= (ê(P, P)n)xê(P, P)1

= 1xê(P, P)

= ê(P, P)

ê(S,R) 6= 1

13

We now define the bilinear Diffie-Hellman problem and the decisional Diffie-
Hellman problem.

Definition 5.2. The bilinear Diffie-Hellman problem (BDHP) is the prob-
lem of, given a bilinear pairing ê on (G1, GT) and P, aP, bP, cP , computing
ê(P, P)abc.

Definition 5.3. The decisional Diffie-Hellman problem (DDHP) in G1 is
the problem of deciding whether a given quadruple (P, aP, bP, cP) of elements
of G1 is a valid Diffie-Hellman quadruple. That is whether cP = abP .

Note that the DDHP can be efficiently solved. Let γ1 = ê(P, cP) = ê(P, P)c

and γ2 = ê(aP, bP) = ê(P, P)ab. We have that cP = abP if and only if γ1 = γ2

5.3 Protocols

In this section, we will introduce some protocols which can be used with billinear
pairings.

5.3.1 Joux’s key agreement

In [Jou04], Joux proposed a one-round three-party key agreement which was
then modified by Verheul in [Ver04]; here we breifly outline Verheul’s adaptation.

Algorithm 5.2 (Joux’s protocol). Three parties, Alice, Bob and Charlie would
like to exchange a shared secret with only one round of communications.

1. Trent generates, for some prime number n, an additively written group
G1 = 〈P 〉 of order n, a multiplicatively written group GT also of order n
and a bilinear pairing ê on (G1, GT). He publishes (G1, GT , ê).

2. Alice, Bob and Charlie each choose a secret key a, b, c ∈ Z∗n, respectively.

3. Alice, Bob and Charlie each publish aP, bP, cP respectively.

4. Alice computes K = ê(bP, cP)a, Bob computes K = ê(cP, aP)b, and Char-
lie computes K = ê(aP, bP)c.

Then, all three parties will have the same shared secret K = ê(P, P)abc. An
eavesdropper will have to solve an instance of the BDHP. This protocol is not
practically useful as it is not resistant to active attacks without another round
of communications. We will consider an example of Joux’s protocol at the end
of the section.

14

5.3.2 Short Signatures

Cryptographic digital signature schemes are incredibly useful. All public-key
cryptosystems (PKC) are vulnerable to a ‘man-in-the-middle’ attack. Suppose
Alice wishes to send a secure message to Bob. Mallory is eavesdropping on
their communications and is capable of not only interpreting their signals, but
also altering the messages sent in both directions. If neither Alice nor Bob
is aware of Mallory’s presence, then he is able to read all (supposedly) secure
communications between Alice and Bob and even alter these communications if
he wishes. Digital signatures allow Alice and Bob to get around this problem.

The majority of digital signature schemes, such as the ElGamal digital signature
scheme or the RSA digital signature scheme require sending a pair of integers
modulo n where n is the order of some cyclic group. The Boneh-Lynn-Shacham
(BLS) short signature scheme requires sending only one group element which
can be represented in approximately the same number of bits as an integer
modulo n.

This protocol will use a bilinear pairing ê on (G1, GT); we require that the DHP
in G1 is intractable. We will need to use a hash function

H : {0, 1}∗ → G1\{∞}

Alice selects a private key as some integer a ∈ [1, n− 1] and publishes her pubic
key A = aP . Alice signs a message m ∈ {0, 1}∗ with the group element S = aM
where M = H(M). Bob verifies Alice’s signature by computing M = H(M) and
verifying that (P,A,M, S) is a valid Diffie-Hellman quadruple, an instance of
the DDHP as discussed above. Bob verifies ê(P, S) = ê(A,M). Suppose Mallory
wishes to forge Alice’s signature on the message m, he needs to compute S = aM
given only P,A and M = H(m); this is an instance of the DHP in G1 which we
assumed to be intractable.

5.4 Tate Pairing

We follow [Men09]. We have E, an elliptic curve defined over some finite field
K = Fq by a Weierstrass equation r(x, y) = 0. Let K be the algebraic closure
of K and use E to denote E(K). The function field of E over K is the field of
fractions K(E) of K[x, y]/(r(x, y)). An automorphism σ of K over K is defined
as Pσ = (σ(x), σ(y)) if P = (x, y) and ∞σ =∞.

Definition 5.4 (Divisors). For E,K as above.

1. A divisor on E is a formal sum of points D =
∑
P∈E nP (P), where the

nP are integers only finitely many of which are nonzero.

15

2. The support of D is the set of points P ∈ E for which np 6= 0.

3. A zero divisor is a divisor satifying

∑
P∈E

nP = 0.

4. D is said to be defined over K if, for all automorphisms σ of K over K,
Dσ =

∑
P nP (Pσ) = D.

5. The set of all divisors defined over K is denoted by DivK(E)

6. A principal divisor is divisor of a function f ∈ K(E), defined as div(f) =∑
P∈EmP (P) where mP is the multiplicity of P as a root of f .

7. For D1, D2 ∈ DivK(E), we say that D1 is euqivalent to D2, denoted
D ∼ D2, if there is some f ∈ K(E) such that D1 = D2 + div(f).

8. For f ∈ K(E) and D =
∑
P (P) ∈ DivK(E), if div(f) and D have disjoint

support, then

f(D) :=
∏
P∈E

f(P)nP ∈ K.

Note that f(D) 6= 0.

Theorem 5.1. A divisor D =
∑
P∈E nP (P) is principal if and only if∑

P∈E
= 0 and

∑
P∈E

nP (P) =∞

Proof. Omitted.

We now work towards defining the Tate pairing. Suppose the number of points
on the curve E defined over K = Fq, is hn where n is some prime number such
that q is not a multiple of n (so gcd(n, q) = 1). Now set k to be the smallest
natural number satisfying n | qk−1. The set of n-torsion points of the elliptic
curve is defined as

E[n] :=
{
P ∈ E(K) : nP =∞

}
We can show that E[n] ∼= Zn ⊕ Zn. We will denote the order-n subgroup of
F∗qk by µn. We’d like k > 1 so let us assume that n - q − 1. We will have

E[n] ⊆ E(Fqk) and so n2 | #E(Fqk). Also suppose that gcd(n, h) = 1 and that
n - #E(Fqk)/n2.

The (modified) Tate pairing is a map

e : E[n]× E[n]→ µn

defined as follows. We take P,Q ∈ E[n] and fP a function such that

div(fP) = n(P)− n(∞)

16

This will mean that fP has a zero of order n at P , a pole of order n at∞ and no
other zeros or poles. The existance of this fP is ensured by Theorem 5.1. Now
let R ∈ E[n]\{∞, P,−Q,P −Q} and let DQ = (Q+R)− (R). Our selection of
R means that DQ and div(fP) have disjoint support. Then we define the Tate
pairing by

e(P,Q) = fP (DQ)(q
k−1)/n =

(
fP (Q+R)

fP (R)

)(qk−1)/n)

(5.1)

Note that the Tate pairing does not depend on the choice of fP and R (so
is well defined) and that it is bilinear and non-degenerate. The difficult part
in computing the Tate pairing, is finding a function fP satisfying the correct
requirement for the divisor. Miller’s algorithm describes a method for doing so.

5.4.1 Miller’s Algorithm

We will describe Miller’s algorithm for computing e(P,Q) where P,Q ∈ E[n]
but first we discus some preliminaries. For each i ∈ N let fi be a function whose
divisor is

div(fi) = i(P)− (iP)− (i− 1)(∞).

Note that we have f1 = 1 and fn = fP . The following Lemma helps us to
efficiently compute fn.

Lemma 5.1. For P ∈ E[n] and i, j ∈ N, let ` be the line through iP and jP
and let v be the vertical line through iP + jP . Then we have that

fi+j = fifj
`

v
(5.2)

Proof. The divisors of the lines ` and v encode the definition of the group law
for E. We have

div

(
fifj

`

v

)
= div(fi) + div(fj) + div(`)− div(v)

= {i(P)− (iP)− (i− 1)(∞)}
+ {j(P)− (jP)− (j − 1)(∞)}
+ {(iP) + (jP) + (−(i+ j)P − 3(∞)}
− {((i+ j)P) + (−(i+ j)P)− 2(∞}

= (i+ j)(P)− ((i+ j)P)− (i+ j − 1)(∞)

= div(fi+j)

17

Now we convert n to binary as n = (nt, . . . , n1, n0)2. We will compute fP with
a left-to-right double-and-add method. Suppose that, after we have examinded
the leftmost t−u bits, we have fm wherem = (nt, nt−1, . . . , nu+1)2. We compute
f2m by setting i = j = m in equation (5.2). Also, if nu = 1, then we can compute
f2m+1 by setting i = 2m and j = 1 in equation 5.2. fP will have been computed
after t+ 1 iterations. Note that to compute the Tate pairing, we only need the
values of fP at Q + R and R so at intermediate steps, we only calculate the
values of the functions fi at these points. Miller’s algorithm is the following.

Algorithm 5.3. Given P,Q ∈ E[n], we compute e(P,Q):

1. Let the binary representation of n be n = (nt, . . . , n0)2.

2. Choose a point R ∈ E[n]\{∞, P,−Q,P −Q}.
3. Set f ← 1, T ← P .

4. for i from t down to 0:

(a) Let ` be the tangent line through T , and let v be the vertical line
through 2T .

(b) Set T ← 2T .

(c) Set f ← f2 · `(Q+R)
v(Q+R ·

v(R)
`(R) .

(d) If ni = 1 then

(i) Let ` be then line through T and P, and let v be the vertical line
through T + P .

(ii) Let T ← T + P .

(iii) Let f ← f · `(Q+R)
v(Q+R) ·

v(R)
`(R)

5. Return (fq
k−1)/n).

The algorithm is not always successful in theory but is usually in practice (when
used in pairing based protocols). If any of the intermediate lines ` or v has a
zero at Q + R or R, then the algortithm may fail. However, in practice, we
usually have P ∈ E(Fq) and Q 6∈ E(Fq), then the zeros of ` and v are all in
〈P 〉 ⊆ E(Fq) and so R ∈ E[n]\E(Fq) means that ` and v do not have zeros at
Q+R or R.

5.4.2 Converting the Tate pairing into a usable pairing

Again, following [Men09]. To use the Tate pairing for pairing-based cryptog-
raphy, it is required to satisfy the conditions of Definition 5.1. Although the
Tate pairing, is bilinear, non-degenerate and efficiently computable, E[n] is not
a cyclic group of order n. We can convert the Tate pairing into a usable pairing
in one of two ways, depending on the type of elliptic curve we have. We first
give the definition of a supersingular curve.

18

Definition 5.5. An elliptic curve E over a field K is supersingular if the
endomorphism ring of E over K has rank 4 as a Z-module. An elliptic curve
that is not supersingular is ordinary.

If E is supersingular and k > 1, then we take a point P ∈ E(Fq) of order n
and an endomorphism Ψ : E → E such that Ψ(P) 6∈ 〈P 〉. Then consider the
function

ê : 〈P 〉 × 〈P 〉 → µn

(Q,R) 7→ (Q,Ψ(R)).

This function satisfies ê(P, P) 6= 1 and so ê is a bilinear pairing on (〈P 〉, µn)
and satisfies Definition 5.1. Ψ is called a distortion map.

Again, if k > 1 but now E is ordinary, then we can show that there is no such
distortion map. To find ê in this case, we first select order-n points P ∈ E(Fq)
and Q 6∈ E(Fq) and define

ê : 〈P 〉 × 〈Q〉 → µn

This restriction is a non-degenerate, asymmetric, billinear pairing ê : G1×G2 →
GT where G1 = 〈P 〉, G2 = 〈Q〉 and GT = µn are cyclic groups of order n. We
may need to adjust the protocols given in section 5.3 to use this restriction.

5.5 Curve Selection

Thus far, we have made no discussion of how we can choose an elliptic curve
for use in a cryptographic system. We can choose these randomly, but as we
will see, this can lead to curves over which computations take too long and/or
do not provide sufficient security. In this section, we will discus how we may
choose curves that provide good security whilst still enabling us to perform
computations.

When we choose our elliptic curve, we need the parameters to satisfy certain
conditions in order for any cryptographic uses of the elliptic curve to be secure.
These conditions are the following:

1. n needs to be large enough such that the discrete logarithm problem in
an order-n subgroup of E(Fq) is intractable.

2. k needs to be large enough so that the discrete logarithm problem in Fqk
is intractable.

3. k needs to be small enough that arithmetic in Fqk can be efficiently per-
formed.

19

An important parameter when considering the security offered by pairing-friendly
curves is

ρ =
log q

log n
.

This measures the size of the base field relative to the prime-order subgroup.
We recreate table 1.1 of [FST10].

Security level Subgroup size Extension field size Embedding degree k
(in bits) n (in bits) qk (in bits) ρ ≈ 1 ρ ≈ 2

80 160 960 –1280 6 –8 2*, 3 –4
112 224 2200 –3600 10 –16 5 –8
128 256 3000 –5000 12 –20 6 –10
192 384 8000 –10000 20 –26 10 –13
256 512 14000 –18000 28 –36 14 –18

Table 1: Comparison of various common security levels and the subgroup sizes,
extension field sizes and embedding degrees required to achieve them.

So if we wanted a security level of 256-bits, we would need to choose a prime n
somewhere around 2512 and qk approximately 216000.

For example, if we choose q = 692342753, a randomly generated curve might be

y2 = x3 + 64093880x+ 47115169

which has a subgroup of prime order n = 5273. It turns out that the embedding
degree is k = 2639 which gives qk an approximate size (in bits) of 77500. Our
subgroup order n only has a bit length of 13; we would like this bit length to
be at least 160 before we have any meaningful security. Also, the embedding
degree k is very large. So not only is the subgroup size too small to provide
useful security, but the embedding degree is too large for the elliptic curve to be
usable. On page 8 of [FST10], the authors claim that in if we choose a random
elliptic curve over a random field Fq, with subgroup of prime order n ≈ q, we
can expect the embedding degree to be around n. So if we were to increase our
subgroup size here to provide useful security, we would expect the embedding
degree to increase with it. What we require is a method of finding an elliptic
curve with large prime subgroup sizes but small embedding degrees. We will call
such curves pairing-friendly. Below is a formal definition of pairing-friendly
as suggested in [FST10].

Definition 5.6. An elliptic curve E defined over a finite field Fq is said to be
pairing-friendly if:

1. There exists some prime n ≥ √q that divides #(Fq), and

2. The embedding degree k of E with respect to n satisfies k < log2(n)/8

We will consider supersingular pairing-friendly curves and ordinary pairing-
friendly curves.

20

5.5.1 Supersingular Curves

We will not make too much discussion of supersingular elliptic curves as it
has been shown that the embedding degree k for supersingular curves is k ∈
{1, 2, 3, 4, 6}. So if we would like to have a embedding degree greater than 6, we
must use ordinary elliptic curves.

5.5.2 Ordinary Curves

Before we delve into this section, we need to define what it means for an elliptic
curve to have complex multiplication. Suppose E is an elliptic curve defined
over a field K. If the ring of K-endomorphisms of E is larger than the set of
integers, then we say that E has complex multiplication and is CM curve. Note
that if K is a finite field, then E is guarenteed to have complex multiplication.
We define, for an ordinary elliptic curve E over a finite field Fq, the CM dis-
criminant D to be minus the square-free part of 4q− t2 where t = q+1. There
are many methods for generating pairing-friendly ordinary elliptic curves which
are discussed at some length in [FST10]; here we will explore the method orig-
inally suggested by Cocks and Pinch. The Cocks-Pinch method takes as input
an embedding degree k, a prime n and a complex multiplication discriminant
D and outputs a prime q and a trace t such that there is an elliptic curve over
Fq that has q + 1− t points and

n | q + 1− t and n | qk − 1

One we have aplied the Cocks-Pinch method, we must use the complex mul-
tiplcation mathod of curve consturction to actually construct the curve. Said
method is originally credited to Atkin and Morain in [AM93] and is not repro-
duced here. We outline Algorithm IX.4 of [BSS05].

Algorithm 5.4. Given k, n,D ∈ Z such that D is square modulo n, n is prime
and k | n − 1. We will output q, t such that q is prime and there is an elliptic
curve over Fq with q + 1− t points and n | q + 1− t and n | qk − 1.

1. Choose a primitive kth root of unity g in Fn.

2. Choose an integer a ≡ 2−1(g + 1) (mod r).

3. If gcd(a,D) 6= 1, then choose another g.

4. Choose an integer b0 ≡ ±(a− 1)/
√
D (mod r).

5. Set j ← 0. Then until q is prime:

(a) Set q ← a2 −D(b0 + jr)2

(b) Set j ← +1.

6. Set t← 2a.

7. Return q and t.

21

We will now give an example. We let D = −7, k = 7 and n = 2437. A quick
check shows that the conditions of the algorithm are satisfied; the Legendre
symbol

(
D
n

)
= 1. We find a primitive 7th root of unity by picking a random

element of Zn and raising it to the power of (n − 1)/k modulo n. Here the
random element we pick is 1979 giving g = 801, a = (g + 1)/2 = 401 and then
b0 = (a − 1)/

√
(D) ≡ 196 (mod n). Following the algorithm, we get that, for

j = 4, q = 692342753 and t = 802.

We now are left with the challenge of finding an elliptic curve using the complex
multiplication method. We calculate the curve to be given by

y2 = x3 + 210819370x+ 271090911.

It turns out that this curve does not satisfy definition 5.6, however, it is signif-
icantly easier to work with than the randomly chosen curve from earlier.

5.6 An example of Joux’s protocol

We will give an example of Joux’s protocol using the Tate pairing. As mentioned
earlier, we will have to modify the protocol slightly; the protocol is similar to
one of [Jou04].

Algorithm 5.5 (Joux’s key agreement with the Tate pairing). Suppose Al-
ice, Bob and Charlie wish to exchange a shared secret with only one round of
communications.

1. Trent chooses an Elliptic curve E over a finite field Fq for some prime q
such that the set of points of the elliptic curve has a subgroup of prime
order n. He chooses points P ∈ E(Fq) and Q 6∈ E(Fq) both of order
n. Trent publishes (〈P 〉, 〈Q〉, ê) where ê is the restricted Tate pairing ê :
〈P 〉 × 〈Q〉 → µn.

2. Alice, Bob and Charlie each choose a secret integer in Z∗n and publish
their public key pairs (PA, QA) = (aP, aQ), (PB , QB) = (bP, bQ) and
(PC , QC) = (cP, cQ) respectively.

3. Each of Alice, Bob and Charlie computes the shared secret S as

S = ê(bP, cQ)a (Alice)

S = ê(cP, aQ)b (Bob)

S = ê(aP, bQ)c (Charlie)

We will now give an example using the elliptic curve we constructed earlier with
the Cocks-Pinch method.

22

Example 5.1. Suppose Alice, Bob and Charlie would like to exchange a shared
secret. Trent chooses the elliptic curve generated earlier by the cocks-pinch
method. We have E given by

y2 = x3 + 210819370x+ 271090911

over the field Fq for q = 692342753. He selects the point P with coordinates
(565432016, 168138289) and point Q with coordinates

(77275493x6 + 43128140x5 + 303325271x4 + 80803561x3 + 505621793x2+

102464972x+ 488677159, 556744255x6 + 256498800x5 + 677864764x4+

216963775x3 + 304849498x2 + 628184040x+ 522278325)

He also specifies the Tate pairing ê : 〈P 〉 × 〈Q〉 → µn where n = 2437. Suppose
Alice, Bob and Charlie choose their private keys to be a = 689, b = 1045 and
c = 1978 respectively. Alice, Bob and Charlie each compute their public key
pairs (PA, QA), (PA, QB) and (PA, QB) which are below in A.4. Alice, Bob and
Charlie can each calculate the shared secret, again, we do not explicitly specify
the values here, but they are in A.4. The shared secret is

S = 592222373x6 + 202365451x5 + 657132309x4 + 463067684x3+

103777291x2 + 156353336x+ 590907738

A Code

In this appendix, we have some scripts written in SageMath.

A.1 Elliptic Curve Class

This is a script that serves only to define an ECurve class for use in pairing
based cryptography. The class initiates an elliptic curve and then has functions
for finding the embedding degree and prime subgroup order and giving n-torsion
points P ∈ E(Fq) and Q 6∈ E(Fq).

1 class ECurve:
2
3 def __init__(self , q, a, b, n = None , t = None):
4 F.<tt > = GF(q)
5 self.field = F
6 self.curve = EllipticCurve(self.field , [a, b])
7 self.a = a
8 self.b = b
9 self.q = q

23

10 if n is not None:
11 self.n = n
12 if t is not None:
13 self.t = t
14

15 def get_prime_subgroup(self):
16 card = self.curve.cardinality ()
17 prime_facs = [i[0] for i in factor(card)]
18 potential_ns = [i for i in prime_facs if gcd(

self.q, i) == 1]
19 potential_ns = [n for n in potential_ns if (

self.q - 1) % n != 0]
20 if potential_ns == []:
21 self.n = None
22 else:
23 self.n = potential_ns [-1]
24

25 def get_embedding_degree(self):
26 k = 2
27 while (self.q ^ k - 1) % self.n != 0:
28 k += 1
29 if k > 10000: # an escape for when the

embedding degree is large
30 print ’k > 10000 ’
31 return
32 self.k = k
33

34 def get_big_curve(self):
35 if not hasattr(self , ’k’):
36 self.get_embedding_degree ()
37 self.big_curve = (ECurve(self.q**self.k, self.

a, self.b, self.n))
38

39 def give_n_torsion_point(self , restrict=False):
40 if not hasattr(self , ’n’):
41 self.get_prime_subgroup ()
42 if not hasattr(self , ’k’):
43 self.get_embedding_degree ()
44 if restrict: # usually want a point from the

bigger field
45 while True:
46 Q = self.curve.random_element ()
47 if hasattr(self , ’t’):
48 C = self.q + 1 - self.t
49 else:
50 C = self.curve.cardinality ()
51 h = int(C / self.n)
52 while h % self.n == 0:
53 h = int(h / self.n)
54 Q *= h
55 if Q != self.curve (0) and self.n * Q

== self.curve (0):
56 break
57 else:
58 if not hasattr(self , ’big_curve ’):

24

59 self.get_big_curve ()
60 Q = self.big_curve.give_n_torsion_point(

True)
61 return(Q)
62

63 def def_point(self , x, y):
64 var(’tt’)
65 F.<tt> = GF(self.q)
66 x_ , y_ = 0, 0
67 for i in x:
68 x_ = x_ + i[0] * tt**i[1]
69 for i in y:
70 y_ = y_ + i[0] * tt**i[1]
71 return(self.curve(x_, y_))
72
73 def speak(self):
74 print ’We have the’, self.curve
75 if hasattr(self , ’n’):
76 print ’n = ’, self.n
77 if hasattr(self , ’k’):
78 print ’k = ’, self.k

A.2 Lenstra

This is an implimentation of Lenstra’s method. The first function is some
basic checks before we begin the metod propper. Then we have a function for
generating the bound k given a bound B and a function for generating a curve
and point combination satisfying the required condtions. The final function
is the iteration of choosing multiple curves until we find one that factors the
required integer. We run the script to attempt to factorise 162248396707; the
output of running the script is below.

1 def check_n(n):
2 # check if n is prime
3 if n.is_prime ():
4 print "{} is prime".format(n)
5 quit()
6 # checking if n is divisble by 2 or 3
7 if n % 2 == 0:
8 print "{} is even".format(n)
9 quit()

10 if n % 3 == 0:
11 print "{} is a multiple of 3".format(n)
12 quit()
13 # check if n is a perfect power
14 if n.is_perfect_power ():
15 print "{} is a perfect power".format ()
16 quit()
17
18
19 # generating the bound k given B

25

20 def gen_k(B):
21 arr = []
22 for p in Primes ():
23 if p <= B:
24 b = 1
25 while True:
26 if p ^ (b + 1) <= B:
27 b += 1
28 else:
29 break
30 arr.append(p ^ b)
31 else:
32 break
33 k = 1
34 for i in arr:
35 k *= i
36 return k
37
38

39 # generating the elliptic curve and point
40 def gen_curve(n):
41 while true:
42 a = randint(2, n - 1)
43 x_P = randint(2, n - 1)
44 y_P = randint(2, n - 1)
45 b = y_P ^ 2 - x_P ^ 3 - a * x_P
46

47 # checking the curve is nonsignular on Z/nZ
48 g = gcd(4 * a ^ 3 + 27 * b ^ 2, n)
49 if g == 1:
50 break # good to continue in this case
51 elif g == n:
52 continue # need to regenerate the variables
53 else: # 1 < g < n
54 print "{} divides {}".format(g, n)
55 quit()
56
57 E = EllipticCurve(Integers(n), [a, b])
58 P = E(x_P , y_P)
59
60 return [P, E]
61

62
63 def lenstra(n, B):
64 check_n(n)
65 k = gen_k(B)
66 cond = True
67 while cond:
68 [P, E] = gen_curve(n)
69 P_1 = P
70 F = factor(k)
71 factors = flatten ([([p] * m) for (p, m) in F])
72 for i in factors:
73 try:
74 P_1 *= i

26

75 except ZeroDivisionError as e:
76 s = int(str(e). split(’ ’)[2])
77 ans = gcd(s, n)
78 print "{} divides {}".format(ans , n)
79 cond = False
80 break
81
82

83 lenstra (162248396707 , 10)

The output is:

1 918583 divides 162248396707

A.3 Cocks-Pinch Method

Below we have a script for generating a pairing-friendly curve using the Cocks-
Pinch method. Whilst writing the script, it was ran multiple times and then
updated with intermediary values. Again, the output is below. This is the curve
we use in examples in section 5.

1 load(
2 ’/home/jack/documents/work/4 th_year ’
3 ’/dissertation/code/elliptic_class.sage’
4)
5 D, k, n = -7, 7, 2437
6 K = GF(n)
7 g = (K(1979)) ^ ((n - 1) / k) # g = 801
8 a = K((g + 1) / 2) # a = 401
9 b_0 = K(a - 1) / K(D).sqrt() # b_0 = 196

10 j, q = -1, 4
11 while not Integer(q). is_prime ():
12 j += 1
13 q = int(a) ^ 2 - D * (int(b_0) + j * n) ^ 2
14 poly = hilbert_class_polynomial(D)
15 L = GF(q)
16 new_poly = poly.change_ring(L)
17 list_of_roots = new_poly.roots ()
18 j = list_of_roots [0][0]
19 k = L(j / (1728 - j))
20 c = L(159103842)
21 a = 3 * k * c ^ 2
22 b = 2 * k * c ^ 3
23 print ’a = ’, a
24 print ’b = ’, b
25 print ’q = ’, q
26 E = ECurve(q, a, b)
27 E.speak ()

The output is:

1 a = 210819370

27

2 b = 271090911
3 q = 692342753
4 We have the Elliptic Curve defined by y^2 = x^3 +

210819370*x + 271090911 over Finite Field of size
692342753

A.4 Tate Pairing

We have a script for Joux’s protocol as in 5.6. We define the function tt par

as we do as Sage requires both points to come from the same curve.

1 load(
2 ’/home/jack/documents/work/4 th_year ’
3 ’/dissertation/code/elliptic_class.sage’
4)
5
6 a, b, q = 210819370 , 271090911 , 692342753
7 E = ECurve(q, a, b)
8 P = E.curve (565432016 , 168138289)
9 Q1 = [

10 [77275493 , 6],
11 [43128140 , 5],
12 [303325271 , 4],
13 [80803561 , 3],
14 [505621793 , 2],
15 [102464972 , 1],
16 [488677159 , 0]
17]
18 Q2 = [
19 [556744255 , 6],
20 [256498800 , 5],
21 [677864764 , 4],
22 [216963775 , 3],
23 [304849498 , 2],
24 [628184040 , 1],
25 [522278325 , 0],
26]
27
28

29
30 def tt_par(P, Q, E):
31 return E.big_curve.curve(P).tate_pairing(Q, E.n, E

.k)
32
33

34 E.get_prime_subgroup ()
35 E.get_embedding_degree ()
36 E.get_big_curve ()
37 Q = E.big_curve.def_point(Q1, Q2)
38 # print ’P’, P
39 # print ’Q’, Q
40 # print E.n

28

41 a, b, c = 689, 1045, 1981
42 Q_A , Q_B , Q_C = a * Q, b * Q, c * Q
43 P_A , P_B , P_C = a * P, b * P, c * P
44 print ’Q_A =’, Q_A
45 print ’Q_B =’, Q_B
46 print ’Q_C =’, Q_C
47 print ’P_A =’, P_A
48 print ’P_B =’, P_B
49 print ’P_C =’, P_C
50 S_A = tt_par(P_B , Q_C , E)**a
51 S_B = tt_par(P_C , Q_A , E)**b
52 S_C = tt_par(P_A , Q_B , E)**c
53 print ’Shared secrets the same?’, S_A == S_B and S_A

== S_C
54 print ’Shared secret =’, S_A

The output for which is

1 Q_A = (664452163* tt^6 + 605251211* tt^5 + 523248074* tt
^4 + 255090228* tt^3 + 149292898* tt^2 + 663506829* tt
+ 7940698 : 486250160* tt^6 + 76211383* tt^5 +

16956031* tt^4 + 510641267* tt^3 + 439276018* tt^2 +
343359925* tt + 22203957 : 1)

2 Q_B = (429642517* tt^6 + 142581427* tt^5 + 418685613* tt
^4 + 437566590* tt^3 + 483466948* tt^2 + 448980515* tt
+ 254773409 : 294842493* tt^6 + 296218475* tt^5 +

498364755* tt^4 + 160399192* tt^3 + 100602147* tt^2 +
553837880* tt + 542995682 : 1)

3 Q_C = (441765606* tt^6 + 179179203* tt^5 + 687850474* tt
^4 + 264680871* tt^3 + 425868865* tt^2 + 45420919* tt
+ 23712548 : 23241641* tt^6 + 460341032* tt^5 +
206417946* tt^4 + 678475761* tt^3 + 529432213* tt^2 +
13833738* tt + 236354811 : 1)

4 P_A = (436557109 : 413067132 : 1)
5 P_B = (210938951 : 347490330 : 1)
6 P_C = (625029634 : 201311858 : 1)
7 Shared secrets the same? True
8 Shared secret = 592222373* tt^6 + 202365451* tt^5 +

657132309* tt^4 + 463067684* tt^3 + 103777291* tt^2 +
156353336* tt + 590907738

A.5 Miller’s Algorithm

Finaly, we include a broken implimentation of Miller’s Algorithm; in this, we
follow [Men09]. As mentioned in said paper, the algorithm should be inde-
pendent of the choice of R, however this implementation is not. Also, when
P ∈ E(Fq) and Q 6∈ E(Fq), there should be no zero division errors, however this
implementation does give zero-division errors in this case. These issues mean
that we instead use SageMath’s built-in function for Miller’s algorithm, which
we can see by studying the source code, uses a different algorithm without the

29

point R.

1 load(’pair_classes.sage’)
2
3 def millers_algorithm(E, P, Q):
4 R = E.give_point ()
5 set1 = set([E.curve (0), P, -1 * Q, P - Q])
6 set2 = set(E.curve.points ())
7 set1u2 = set1.union(set2)
8 R_in_union = False
9 try:

10 R_small = R.change_ring(E.curve.base_field ())
11 R_in_union = R_small in set1u2
12 except ValueError:
13 print ’changing R’
14 while R_in_union or R in set1u2:
15 R_in_union = False
16 R = E.give_point ()
17 print ’R’, R
18 one = E.curve.base_field ().one()
19 f, T = one , P
20 for i in range(len(E.n_bin)):
21 l = TanLine(T)
22 v = VertLine (2 * T)
23 T = 2 * T
24 num = l.eval(Q + R) * v.eval(R)
25 denom = v.eval(Q + R) * l.eval(R)
26 f = f**2 * (num / denom)
27 if E.n_bin[i] == 1:
28 l = ThruLine(T, P)
29 v = VertLine(T + P)
30 T = T + P
31 num = l.eval(Q + R) * v.eval(R)
32 denom = v.eval(Q + R) * l.eval(R)
33 f = f * (num / denom)
34 expon = Integer ((E.q**E.k - 1) / E.n)
35 return(f^expon)

B Alice and Bob

This paper, like many others in cryptography use the names Alice and Bob to
represent the two parties that would like to exchange a shared secret, or com-
municate securely. These names were first used by Ron Rivest, Adi Shamir and
Leonard Adleman in their paper [RSA78]. Their purpose is to aid comprehen-
sion, for example, ”Bob would like to send Alice a secret message” may be easier
to understand than ”B would like to send a secret message to A”. After the
introduction of Alice and Bob, many other characters have been introduced; we
list the characters used in this paper below.

30

• Alice and Bob. The two original characters. Usually Alice and Bob would
like to agree upon a shared secret or send one another secure communica-
tions.

• Charlie. A generic third party.

• Eve. An eavesdropper. A passive attacker who is able to listen in on
communications between Alice and Bob without altering or disrupting
them.

• Mallory. A malicious attacker. Like Eve, Mallory is able to listen to all
communications between Alice and Bob, however unlike Eve, he is able
to modifiy the messages. Mallory could leave messages intact, modify
them and send them on without Alice and Bob’s knowledge or even stop
messages all together. Securing communications against Mallory is signif-
icantly more difficult than against Eve, indeed, any system secure against
Mallory is secure against Eve.

• Trent. A trusted third party. Trent will often generate for Alice and Bob
the initial structures needed for them to generate their public keys.

References

[AM93] A Oliver L Atkin and François Morain. Elliptic curves and primality
proving. Mathematics of computation, 61(203):29–68, 1993.

[BSS05] Ian F Blake, Gadiel Seroussi, and Nigel P Smart. Advances in elliptic
curve cryptography, volume 317. Cambridge University Press, 2005.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE transactions on Information Theory, 22(6):644–654, 1976.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE transactions on information the-
ory, 31(4):469–472, 1985.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of
pairing-friendly elliptic curves. Journal of cryptology, 23(2):224–280,
2010.

[Jou04] Antoine Joux. A one round protocol for tripartite diffie–hellman. Jour-
nal of cryptology, 17(4):263–276, 2004.

[Kob94] Neal Koblitz. A course in number theory and cryptography. Springer
Science & Business Media, 1994.

[Mar19] G. Marasingha. ECM3726 - Cryptography Lecture Notes, 2019.

[Men09] Alfred Menezes. An introduction to pairing-based cryptography. Re-
cent trends in cryptography, 477:47–65, 2009.

31

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126, 1978.

[Ver04] Eric R. Verheul. Evidence that xtr is more secure than supersingu-
larelliptic curve cryptosystems. Journal of Cryptology, 17(4):277–296,
Sep 2004.

32

	Introduction to the project
	Some basic properties of Elliptic Curves
	Group structure of an elliptic curve
	Explicit values for addition

	Elliptic Curve Factorisation
	Pollard's p-1 method
	Lenstra's Method

	Diffie-Hellman and ElGamal
	Diffie-Hellman
	ElGamal

	Bilinear Pairings
	Motivation
	Bilinear pairings
	Protocols
	Joux's key agreement
	Short Signatures

	Tate Pairing
	Miller's Algorithm
	Converting the Tate pairing into a usable pairing

	Curve Selection
	Supersingular Curves
	Ordinary Curves

	An example of Joux's protocol

	Code
	Elliptic Curve Class
	Lenstra
	Cocks-Pinch Method
	Tate Pairing
	Miller's Algorithm

	Alice and Bob

