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Abstract

In climate science, we often want to compare
across different datasets. Difficulties can arise
in doing this due to inevitable mismatches that
arise between observational and reanalysis data,
or even between different reanalyses. This mis-
alignment can raise problems for any work that
seeks to make inferences about one dataset from
another. We considered tropical cyclone location
as an example task with one dataset providing at-
mospheric conditions (ERAS) and another provid-
ing storm tracks (IBTrACS). We found that while
the examples often aligned well, there were a con-
siderable proportion (around 25%) which were
not well aligned. We trained a neural network to
map from the wind field to the storm location; in
this setting misalignment in the datasets appears
as “label noise” (i.e. the labelled storm location
does not correspond to the underlying wind field).
We found that this neural network trained only on
the often noisy labels from IBTrACS had a de-
noising effect, and performed better than the IB-
TrACS labels themselves, as measured by human
preferences. Remarkably, this even held true for
training points, on which we might have expected
the network to overfit to the IBTrACS predictions.

1. Introduction

In the field of climate science, there are many different
datasets from many different sources. There are often times
when we would like to compare across different datasets.
For example, we might want to predict tropical cyclone
tracks (Richman & Leslie, 2012; Camargo & Wing, 2016;
Camargo et al., 2019), flooding (Mosavi et al., 2018; Park
& Lee, 2020; Motta et al., 2021) or the power output of
a renewable power station (Foley et al., 2012; Kumar &
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Kalavathi, 2018; Sharadga et al., 2020) from atmospheric
condition data.

We might, when performing these comparisons, encounter
discrepancies between datasets (Greatbatch & Rong, 2006;
Li et al., 2022). These discrepancies can arise for a number
of reasons. One reason is that some datasets are reanal-
yses (ECMWF, 2023). In reanalysis the goal is often to
produce an accurate, globally consistent representation of
the atmospheric conditions. However, as we cannot directly
measure the atmospheric conditions, we must use computa-
tional modelling to estimate them from indirect observations.
This estimation procedure can introduce mismatches to di-
rect observational data (e.g. the output of a renewable energy
plant), or between different reanalyses. These discrepan-
cies can make it is difficult to draw connections between
variables in different datasets, which causes significant prob-
lems if the two variables of interest in our scientific analysis
are only available in different datasets.

We studied how to mitigate these issues of mismatch be-
tween different datasets. As an example, we studied tropical
cyclones. We had two reanalyses, one providing the location
of tropical cyclones (IBTrACS; Knapp et al., 2010; 2018)
and one providing the atmospheric conditions (ERAS5; Hers-
bach et al., 2018; 2020). Initially, we were interested in
predicting the future location of a tropical cyclone, when
provided with the wind field in the present. However, pre-
liminary analyses indicated that while the track data and the
wind field often aligned well, there were many occasions
where this was not the case, even when comparing the wind
field and tropical cyclone location at the same time. There
were a number of ways in which this misalignment appeared.
In some instances, ERAS would show very obvious signs of
a tropical cyclone in one location while IBTrACS would in-
dicate a tropical cyclone in a different location. Sometimes,
there would appear to be more storms within the wind field
than the number indicated by the storm location data. If we
consider the ERAS5 wind field as the input and the IBTrACS
storm location as the output, then we can consider this to be
an issue of having noisy labels.

Given that there is this misalignment between the IBTrACS
storm locations and the ERAS wind field, it may seem that
the only solution would be to hand-label the storm loca-
tions, based on the ERAS5 wind fields. We considered how-
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ever, whether we could leverage the fact that, in around
75% of instances, there was a very close match between
the two datasets. In other words, instances where the 1B-
TrACS tropical cyclone location would match the ERAS
wind field. We therefore took a naive approach: training
a neural network to predict the IBTrACS storm location
from the ERAS wind field using a U-Net architecture (Ron-
neberger et al., 2015). Surprisingly, despite being trained on
often noisy/mismatched data, we found that the neural net-
work almost always matched human judgements of storm
location based on the ERAS5 wind field. Indeed, even in
instances where the two datasets were misaligned, the neu-
ral network usually gave a much better predication of the
location than the tropical cyclone location dataset.

2. Related Work

There has been much research in the field of noisy label
machine learning (Natarajan et al., 2013; Han et al., 2019;
Song et al., 2023). However, none of this work has studied
whether neural networks are able to address the issues raised
by the noisy labels that are inevitably observed in weather
datasets.

3. Methodology
3.1. Data Description
3.1.1. ERAS

For this work, we need a dataset providing the atmospheric
conditions. Such data includes variables like pressure, tem-
perature, wind speed and direction, and atmospheric pres-
sure. We use ERAS to provide this data (Hersbach et al.,
2018; 2020). ERAS is provided by the Copernicus Climate
Change Service (C3S) at the European Centre for Medium-
Range Weather Forecasts (ECMWF).

It is fairly obvious that it is impossible to obtain measure-
ments of every variable we might be interested in at every
location (latitude, longitude, altitude) within the Earth’s
atmosphere. As such, ERAS is a reanalysis dataset. A re-
analysis first takes a weather forecasting model and uses
it to create a prediction for a certain weather variable (for
example, temperature) based on the value of that variable
at some earlier time. It then corrects this prediction using
known, but indirect, observations; this step is called data
assimilation (Dee et al., 2011). A reanalysis provides a glob-
ally consistent picture of the atmospheric conditions at any
given time, but it is ultimately an estimate based on indirect
measurements and modelling.

The ERAS reanalysis provides many different variables
which are either provided at a single level or at different
pressure levels. The different pressure levels are at 37 pres-
sure levels from 1000 hPa to 1 hPa (hectopascals). Pressure

varies inversely with altitude from sea level, that is, as al-
titude increases, pressure decreases. Most of the ERAS
variables are provided hourly, at a 31 km resolution.

Using all of the variables from the dataset would require
an enormous amount of storage, so instead we use only a
selection. We use wind data because this is, intuitively, the
most indicative of a hurricane. We have u (eastward) and
v (northward) components of the wind. We use the wind
at 850 hPa which corresponds with an altitude of approxi-
mately 1500 m.

It is worth noting that the aim of this work is not to produce
the most accurate storm location model possible. If that
were the goal, then we would almost certainly be able to
achieve a higher accuracy if we used more variables. The
goal of this work is to explore whether we are able to use a
neural network to mitigate the mismatch between different
reanalysis datasets.

3.1.2. IBTRACS

In addition to a dataset providing us with the atmospheric
conditions, we also require a dataset providing us with lo-
cations of tropical cyclones. The dataset we selected is the
International Best Track Archive for Climate Stewardship
(IBTrACS; Knapp et al., 2010; 2018).

This dataset combines best track datasets from many differ-
ent national agencies around the world. An agency’s best
track dataset provides the best location estimate for each
point in the storm’s lifetime, as well as storm intensity at
each of those points.

The IBTrACS dataset provides many variables but the only
information we use from this dataset is the latitude and
longitude of the tropical cyclone centre. This information is
usually provided at 3 hour intervals, with some additional
timestamps (for example, when a tropical cyclone makes
landfall).

3.2. Neural Network Setup

The neural network takes as input the ERA5 w and v chan-
nels of 850 hPa wind speeds at one timestamp. The network
output is an estimate of the location of the tropical cyclone,
and we train the network to match the locations given by
IBTrACS. While we could return this estimate as a con-
tinuous latitude and longitude value (i.e. using regression),
we instead ask the neural network to classify the grid box
that the tropical cyclone is located within, as this allows the
network to naturally return an estimate of the probability
that the tropical cyclone is within a given grid box.

We restrict the data to only the North Indian basin and only
instances where there is exactly one storm in the basin. The
basin is constrained by the equator to the south (all latitudes
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are greater than 0) and longitudes are between 30° and 100°
east. Only tropical storms since 1980 were used, since prior
to then, identification of storms was less reliable. Since
then, satellites have been used to locate storm centres. We
discard any time steps that do not fall on a whole number of
3 hours. In order to reduce the storage requirements of the
data, we coarsen the data to the nearest degree (coarsening
by a factor of about 4).

3.3. Neural Network Architecture

The model we trained for storm location is a U-Net (Ron-
neberger et al., 2015). These typically perform well on tasks
with image-like outputs; our network outputs an “image’
giving the probability of the tropical cyclone being within
each grid box.

s

U-Nets have an encoder-decoder structure and the encoder
half of our network has 4 downsampling layers. Each has
two 3 x 3 convolutions followed by ReLLUs and 2 x 2 max
pooling. Note that the final layer has no max pooling. The
decoder layers consist of interpolation upsampling concate-
nated to the output of the corresponding layer in the encoder
(skip connections) and two 3 x 3 convolutions, each fol-
lowed by a ReLU. The number of filters in the encoder
layers are 64, 128, 256 and 512; similarly, the decoders
have 512, 256, 128 and 64 filters.

We use the U-Net implementation provided in the GitHub
repository attached to Wolny et al. (2020).

3.4. Training Setup

The batch size was 32 and we trained for 100 epochs. We
used Adam (Kingma & Ba, 2014) with a learning rate of
1073 on a cross entropy loss. We split the data into training,
validation and test with 15% each for the test and validation
sets and 70% for the training set. At each learning step, the
network would output a logit for each of the 32 x 56 = 1792
grid boxes, describing the probability of the tropical cyclone
being within that grid box. We calculate the cross entropy
loss by comparing this to the target cell from IBTrACS.

Post-hoc, we apply temperature scaling (Guo et al., 2017).
This method is intended to bring the confidences of the
network closer to the true probabilities. It scales all of the
network’s logits by a single number, the temperature, which
is tuned on the validation set. The relative order of the class
scores is maintained.

4. Results

Now, we compare the original IBTrACS storm locations to
the locations provided by our trained network. Overall, we
find that when they suggest different locations, usually the
neural network gives a better location.

4.1. Qualitative Results

Figure 1 shows four wind fields The wind direction and
magnitude is shown by the direction and size of the arrows
on each point; this data comes from ERAS. The location
of the storm centre, provided by IBTrACS is shown by the
orange cross. The probabilistic predictions of the model are
shown as a colourmap, ranging from white (low probability)
to dark blue (high probability).

The particular storms were chosen by hand to show a mis-
match between IBTrACS and ERAS. In most of these in-
stances, we see that the model will usually put most of
its confidence in the middle of whichever cyclone has the
strongest wind. Intuitively, this is where we, as humans,
would expect the storm to be. In some of these wind fields,
the ground truth label does not appear to be in the middle
of a cyclone, and in some cases does not appear to be in a
cyclone at all.

4.2. Quantitative Results

Of course, it is not possible to reach any definitive conclu-
sions based on just those examples. At the same time, it is
difficult to know how to quantitatively compare the neural
network outputs with those of IBTrACS in the absence of
any “ground truth” data. As such, to determine whether the
locations provided by the U-Net are indeed better than the
locations provided by IBTrACS we devised a test where
one of the authors was shown a wind field with two storm
locations. One of the locations was from the U-Net and the
other from IBTrACS but it was not indicated which was
which (i.e. the author was blinded). The author was asked
which, if either, they preferred. An example is shown in
Figure 2.

200 wind fields were shown from each of the train and test
set, with the storms being chosen randomly (with a seed of
0). Note that there are many cases where the locations co-
coincided, so no preference could be made. The results are
summarised in Table 1, and clearly show an improvement
for the U-Net. In particular, the human preferred the U-Net
46 out of 59 times where there was a preference for the test
set, and 49 of 64 times for the training set.

Using the 59 and 64 instances where there was a preference,
we conducted one-tailed binomial tests. The null hypothesis
was that when there was a preference of one location, both
locations are equally likely. The alternative hypothesis was
that when there was a preference of one location, the U-Net
was more likely to be preferred. The p-values are 9.6 x 1076
and 1.2 x 1075 which both strongly suggests that when
there is a noticeable difference between the two locations,
the U-Net is providing a better location. Note that it is
remarkable that we see improvements even on the training
set, as we might have expected the neural network to overfit
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Figure 1. Wind fields for 4 hand chosen storms. IBTrACS location of storm centre marked by orange cross and probability predicted by
the U-Net shown by the colourmap. Top left 1980-10-19 03:00; top right 1986-11-11 09:00; bottom left 1987-06-02 21:00; bottom right

1996-11-28 18:00.
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Figure 2. Example of a wind field shown to the author for compar-
ison.

to the training set, and therefore to simply give the same
location as the original IBTrACS location that the network
was trained on.

5. Conclusion

In summary, we’ve shown that there are sometimes discrep-
ancies between climate science datasets, and these discrep-
ancies can often make it difficult to draw conclusions about
a target variable in one dataset from data in the other dataset.
We have shown that it is sometimes possible to mitigate

Table 1. Preferences of U-Net location, IBTrACS location and no
preference for test set and train set. 200 images were shown for
each set. The p-value is calculated as a one tailed binomial test
using only the instances where one or other location was preferred.

PREFERENCE TEST SET TRAIN SET
U-NET 46 49
IBTRACS 13 15
NEITHER 141 136
TOTAL 200 200
p-VALUE 9.6x107% 1.2x107°

these mismatches by exploiting the denoising properties
inherent in neural networks.
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